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J Phys A- Matk Gen 24 (1991) 5253-5265 Prnted wn the UK

Constrained dynamics and exterior differential systems

David Harleyt, Robin W Tuckerf and Philip A Tuckey$
School of Physics and Matertals, University of Lancaster, Lancaster LAi 4YB, UK

Recewved 24 June 1991

Abstract, The Dirac analysis of constrained Hamiltonian mechanics 1s one of the conven-
tional precursors to the quantization of classical systems In this paper the analysis 1§
reformulated 1n the language of extenior differentral systems, stanting from the Lagrangian,
moving through the generation of pnmary and secondary constraints and leading to the
consiruction of symmetry generators for gauge symmetstes. This reformuliation extends the
procedure to non-coordinate systems. A computer algebra iaplementation of the procedure
in REDUCE 15 also descrrbed

1. Emiroduciion

Of the various methods of quantization the canonical approach provides a comprehen-
sive and powerful formahsm, particularly for consirained systems. Since symmetries
play a dominant role in MNature such systems oceur freguently and the classical canonical
formulation has proved to be a well respected precursor to any attempt at quantization.
A systematic procedure for analysing problems based on possibly degenerate
Lagrangians has been given by Dirac and his work forms a cornerstone of most modern
developments. Rather than remove redundant variables, implied by the symmetries
inherent in the description of a problem, Dirac provides an algorithm for constructing
a chain of constraints together with a Hamiltonian that describes both the dynamical
gvolution of the system as well as its gauge freedom. Although in practice the detern.ina-
tion of the constraint structure can be a tedious procedure and the classification into
first- and second-class consiraints s non-trivial probiem the method is conceptually
straightforward and may be generalized in principle o fieid systems. Modern develop-
ments based on the techniques of sympleciic reduction and srs metheds owe much
to Dirac’s pioneering affarts in this direction. Symmetries of dynarmical systems provide
much of the data for the standard classical srs description based on such reduction
techniques. Much effori has been spent recently in finding the local symmerry generators
corresponding fo a set of first-class constraints m Dirac’s terminology. There is some
subtlety in ziving 2 comprehensive description of such generators and we address this
problem in the following,

We have found it useful to reformulate Dirac’s procedure for analysing a consirained
dynamical system in the langnage of exierior differential systems. The basic idea is to
recognize that the solurions of a (constrained) dynamica! problem can be put into
corresponidence with a ciass of integral manifolds of a closed involutive exterior
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differential system. Such a reformulation offers onc a number of advantages These
include the analysis of higher-order problems where the Lagrangian depends on
higher-order accelerations, and coordinate independent problems in which the con-
straints arise naturally from the underlying geomeiry of the problem. We illustrate this
generality with an example from the theory of relativistic elastica. Furthermote, for
systetns that exhibit a symplectic structure, it is straightforward to generate equations
for the local symmetries corresponding 1o first-class constraints using the notior: of an
1sovector,

2. Eunler-Lagrange system

The basic setting used here for variational problems in mechanics is as follows. Let X
be an n-dimensional mamfold, {#'} (:i=1,2, .,r) be a set of 1-forms on X, and let
o be 2 further 1-form on X, with w A 8'A A 8" at all points of X. The {8'} will
be cailed the consframi system and w the independence form. Together, they specify a
set {f} of integral mamifoids: one-dimensional immersions f: C - X satisfying

FEe'=0 (2.1)
and
ffo#0 (22}

at all points of C.

For example, for first-order variahonal problems on a configuration space Q with
"coordinates {g'} and an evolution parameter r, X would be the jet bundle J'{R - Q)
with coordinates {7, ¢’, 4}, the constraint system would be the contact system {6' =
dg'~ g’ dr} and the independence form would be o =dr The resulting immersions
are sections of the jet bundle of the form

fires (r,f'm,%éi(f)) 2.3)

As another example, the manifold X for a typical non-coordinate problem might
be an orthonormal frame bundle OM over four-dimensional spacetime M, with coframe
fe”, w%s} (o, =90, 1,2, 3) where {¢”} determines an orthonormal coframe on M and
{w®g} are the corresponding connection 1-forms. Here, a constraint system {8°}=
le', €%, ¢’} and an independence form w = ¢° determine a set of time-hke curves in
OB which are lifts of curves 1n M for which the {e”} define a2 Darboux coframe. A
development of this example is treated in section 5.

Within this basic setting, a variational problem is given by specifying a I-form ¢
on X and requiring that the action

-
J @ (2.4)
fie)

be stationary under vanations of the immersion f which preserve the constraint system
and mmdependence condition, Thai is, the problem is to find those f amongst the set
determined by {8'; @} for which the action is stationary. In this paper, we are not
concerned with end-point conditions. It has been shown (Griffiths 1982) that the
conchtion that f must satisfy 15

o da=0 for all Ve T(X) {2 5)
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where
A=g+ps (2.6)

and the p, are functions on X to be determined.

Following Griffiths, it is useful to extend the manifold X to Y =X xR, introducing
the {p,} as r new coordinates rather than functions to be determined during solution.
The immersions f lift to immersions into Y, which will continue to be denoted by £
The exterior differential system

5={i, dA|VeT(¥}} 2N
with independence form « will be called the Euler-Lagrange system
Continuing the coordinate example for a first-order variational problem with

configuration space (), suppose the action is specified by a Lagrangian L(g’, 4°). The
t-form @ 1s then ¢ = L dr and the Euier-Lagrange system & 1Is

qu‘—q' dr
S=ldp,—Lydr (2.8}
(p.—Ly) dr.

Here L, =aL/3q" and so on. Solving the third of these for the coordinates p, and
substituting into the first gives a system of 1-forms

{dq’—q' dr

dLy—Lydr (29)

whose solutions satisfy the usuat Euler-Lagrange equations.

There is no difficulty in generalizing to Lagrangians which contain higher-order
derivatives of the configuration variables. For a pth order problem, the first jot bundle
is replaced by J°(% - Q), with contact system {dg‘”" — ¢'" """ dr}, where {7} are
et bundle fibre coordinates, and =0, 1, ..., p—1. The Euler-Lagrange system (2.7)
yields the usual Euler-Lagrange equations for higher order problems. For details of
this and other examples, see Griffiths (1982), Hartley znd Tucker (1990).

3. Congtrainl snalysis

In this section, the coordinate-based example descnibed in section 2 is used to motrvate
a method of generating the dynamical constramts for a general Evler-Lagrange system.

The key concept is that of fnvalunon of an exterior differential system on ¥ with
respect to the independence form . For the class of problems considered in this paper
{where w is a 1-form), this 15 the condition that

whrw#FD (3.1}
for all i-forms a in the exterior system at all points on ¥ where all O-forms in the
system vanish. This condition singles out those solutions of the sxterior differential
system for which @ corresponds to an ind:pandent e olutien variable,

The Euler-Lagrange system {2.7) does not generally satisfy the involution condition.
In the case of the exterior system (2.8), the forms
(pr - Lq‘) dr (3.2)

are clearly not in involution with the independence form drn.
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One approach to solving this problem is to solve the coefficients of d7 1z the
offending 1-forms for some of the vanables, say the {p'}, and eliminate those variables
from the rest of the systemn, pulling back to X with exterior system (2.9). Expanded
in terms of the coframe of X, this reads

{dq‘—-q‘v‘ dr

Lygdg’ ~(Ly—Lygig')dr (3.3)

Tt hae haan accnmad hara ﬂnni‘ r doee nnt Aﬂﬂﬂﬂl“ avmliritly on 7. Time- Adamamdan
1av aas oudll @S5uIEnSG OO Wad GOSS DO GIPENG CERLICINY T. 11N8- \l\vP\(KlHUlll.

Lagrangians can be accommodated by parametrization if required.) If the Lagrangian
L is degenerate, so that det(L,,/}=0, then this new system on X will not be in
involution either, as there will be linear combinaticns of the second set of forms giving
rise to forms proportional to d=. In this case, the procedure must be repeated, solving
for some more variables and pulling back to a smaller space, until an involutive system
is found.

For a general exterior differcntial system, this approach mirrors the process of
prolongation of the system to establish a sclution submanifold of the Grassmann
bundle G(Y, w} followed by a projection of this submanifeld back down o Y and a
puliback of the system onio the resulting submanifold of Y. This procedure is detailed
in Griffiths (1982).

Returning to the system (2.8), the conventional approach to finding the correspond-
ing quantum theory, following Dirac (1950), uses a somewhat different analysis. First
a Legendre transformation is made to give the Hamiltonian theory, using the conditions

pl—Lq.=G' (3'4}

These are solved for as many as possible of the ¢, which are then eliminated from
the Hamiltonian

H=pg - L {(3.5)

If the Lagrangian is degenerate then some of the conditions (3.4}, denoted &, will
remam after the elimnation, dependent on the {q', p,} only. These are termed the
primary consiraints, For each primary constraint, one velocity coordinate 4° appears
explicitly in H. (The primary constraints are not used to simplify £} Rather than solve
the primary constraints for some of the {g, p.}, they are appended to the Hamilton
equations of motion as further equations, giving an extended set which must be satisfied
by any solution:

§'=Hyp,
B=-H, (3.6}
qbcz =0.

(The first set of equations is trivial (g% =g”) for those velocities which could not be
eliminated.) Comnsistency of this exiended set of equations then requires that the primary
constraints be preserved under evolution, which can lead to the generation of further
independent equations. Some of these may yield solutions for some of the remaining
velocities {¢°}, the rest being new constraints. The new velocity solutions replace trivial
ones in (3.6), the new constraints are appended to the extended set of equations, and
the procedure is repeated until consistency is achieved.

The znalysis in this Dirac procedure is usually simplified (once the primary con-
straints are obtained) by an adjustment in which the remaining velocities {¢*} are
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eliminated in favour of a set of Dirac multiplers {v”} in such a way that the Hamiltonian
(3.5) takes the form

H=Hy+v"¢, (3.7)

where ¢, are the primary constrainis and aHy/dv™ =0. However, it is not necessary
to make this change for the purpose of generating the secondary constraints,

Ia terms of exterior systems, the above procedure may be described as follows.
The 1-form A on ¥ with #'=dg’'—¢' dr and ¢ =L dr can be rewritten using the
Hamiltonian (3.5) as

A=—Hd++p dg. (3.8)
The Euler-Lagrange system (2.7), (2.8) becomes
dg'—H, dr
S={dp+H,dr (39)
H,dr

Solving as many of the equations H =0 as possible for the {¢'} and pulling back
using those sofutions leaves a system

dg'~H, dr
dp,+ Hdr (3.10)
o dr

17 which some of the ¢' have been eliminated in H, and H . This system is clearly

not in involution with d+ Rather than solve the ¢, to overcome the involution probleim,
they can simply be appended to the exterior system as O-forms, giving

(ba:
8'={dqg'-H, dr {3.11)
kdp,+an dr.

Since f“¢, =0 implies that f* d¢, =0 also, it is necessary to close the system under
extertor differentiation by including the 1-forms dé¢, as well, 2nd then re-examine the
involution condition. Since the ¢, depend solely on the {g', p,}, d$. can be rewritien
as

dé, =y, dr {mod §'}. (3.12)

{This means that the expressions in §' have been used to simplify dé,.) If any of the
X. are independent of the ¢, then 8’ does not give a closed 1nvolutive system. If this
is the case, then some of the y, may vield solutions for some of the remaining ¢°, bu:
the rest are new constraints. The §° solutions may be used 1o pull back to a smaller
space and the new constrainis appended as further 0-forms to the system By repearing
this procedure until involution is achieved, the Dirac constraint analysis is repreduced.

For non-coordinate problems, it mnay not be possible to make 2 distinction between
I-forms corresponding to configuration variables {g'} and those carresponding to
velocities {4}, To extend the constraint analysis tc these problems it 1s necessary
to overcome this difficulty. To do this, it may be noted that it is no more necessary to
soive for the g* at any stage of the procedure than it is to solve for the ¢° or p. It is
passible simply to append al! of the O-form involution conditions to the system at each
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step without distinguishing between constraints and velocity solutions. This time,
including the exterior derivatives of the (-forms in the system will iead to some 1-forms
containing dq° terms as well as new involution conditions. These new 1-forms are jus.
the exterior derivatives of the previous velocity solutions.

Thus the constraint analysis procedure for the general problem is as follows. Start
with the Euler-Lagrange system (2.7) and check if it is in involution with the indepen-
dence form w. If it 1s not, then append the involution conditions as 0-forms to the
system and include their exterior derivatives. Check this extended system for involution
and repeat until an involutive system, closed under exterior differentiation is achieved.

4. Symmetry gemerators for first class consiraints

In the conventional language of the Dirac formalism, the first-class constraints of a
Hamiltonian system give rise to the generators of local symmetry transformations. The
precise meaniang of this statement has been examined in the literature (see, for example,
Gracia and Pons 1988, Gomis et al 1990, Henneaux et af 1990), For a local symmetry
transformation, there must be a family of generators parametnized by an arbitrary
function of the evclution variable 7. In the language of exterior systems, transformations
between solutiens of the sysiem are generated by 1sovectors of the system. These are
vector fields V which satisfy

£,Sc 8. (4.1)

The purpose of this section 1s to establish the connection between first-class constraints
and families of isovectors for extenor differential systems.

According to Dirac, there is a local symmetry corresponding to each primary
firsi-class constraint. This should {ranslate to a family of isovectors of the exterior
system for each primary first-class constraint.

It is convenient here to follow the usual practice and transform the unsolved
velocities {§”} into Dirac multipliers {9°}, writing the Hamiltonian as m {3.7).

After carrying out the constraint analysis described i section 3 and eliminating
all of the v® for which soluiions become available, the final involutive system contains
primary constramis {¢.} and pessibly secondary consiraints {x,} generated during the
analysis. This systein resides on some manifold Y, .

Pulled back to Y, the 1-form A still has the form

A=-Hdr+p dg' (4.2)
s0 that

dA=—dH adr+0Q (4.3)
where

Q=dp adg’ ) {4.4)

gives a symplectic form on submanifolds of ¥, where 7 is constant and the »® are
given by arbifrarily prescribed functions.
For any function f on ¥, df can be expanded as

af =fdr+f-do”+ ¢ 4.5
where i
& =Sy dg'+f, dp. (4.6)
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A corresponding vector field X; on Y, can be defined by

l-xjﬂ-_—gf IX_,- dq’:l'xj. do® =0. (4.7)
This gives a Poisson bracket on functions f, g on Y, defined by
[fgl=ixix2=Zx g (48)

This allows the division of the constraints into first and second class in the usual
way. It is not necessary for the present calculation to consider systems with second-class
constraints: the considerations for systems with only first-class constrainis extend easily
to the more general case (for 2 nice proof of this see Gomis ef of 1990). So attention
below will be restricted to systems with first-class constrainis only. These satisfy

[fgl=0 (mod{¢.,, xa}) for all f, g € {da, 12} (4.9)

One consequence of this is that no solutions for the Dirac muitipliers {v”} arise
during the constraint analysis. The involutory system S,,., on Y,,, can thus be wriiten

O
Xa
S = 4.10
o dg'—H, d7 t4.10)
dp,+Hdr
Its integral manifolds f: U~ Y., have {f*v"} ag arbitrary functions on C.
Consider a local difieomorphism generated by a vector field Z of the form
Z=A4%3,+Xg (4.11)

- for some functions A” and & on Y,,,. (No 3, term has been included in 7 because
difieomorphisms which move slong the same solution are not of interest here) In
order for Z to be an isovector of §,,,, it must satisfy

Lzg=0 (mod{d., x»}) (4.12)
for all ge{d,, x.t and

Fo(dg'—H, dr}=0 (mod §.,.)

) (4.13)

Zz(dp,+H,ydr)=0 (mod &,.).

Lzg=1{G. gl (4 14)

singe d,-g =0, so (4.12) imphies that che function G must be first-class.

The second and third conditions are very similar, and may be dealt with together
by combining them to give

Fpldf -~ X, H dr)=0 (mod 5,,.} (4.15)
for all f such that
af/ar=af/av* =0. (4.16)

For such functions f, df = &, so it follows that

&=X.H dr (mod S, ). (4.17)



5260 D Hariley et al

A short calculation shows that
F aco {df — X;H d7) = —(A%9 2 X; d(Hy+ 1705)) dr
=—(A"Xrp, )} dr

since by (47) &, and X, commute. Also,
Ly df = X H dr) = d(Xof) - (X X;H) dr

=d{G, ] (X XH)dr~X g nH dr

=—X, G, dr - X, G~ dv* - X XcH dr (mod S}
using (4.5), (4.17) ang the Jacobi 1dentity Thus
Loldf — XpH A7) =~y (G o d0® +{G,+ XcH + AP, d7)  (mod §,.).  (4.18)

For Z to be an isavector of S,,., the right-hand side of {(4.18) must vanish. Suitable
functions G and A” may be construcied from the constraints as follows Relabel the
constraints., denoting thern collectively by {¢5} where {¢L} are tue primary constrainis
{#,}, {42} are the secondary constraints generated from the primaries, and so on. If
the constraints have been generated stepwise as in section 3, then there will be a set
of relations

dgh = (¢ "+ Filph, ..., ¢3)) dr (mod 8,y (4.19)
where ;

Fa($h,..., ¢5)=0 (mod ¢h,.. ,d5). (4.20)
{In (4.19) 81, denotes the 1-forms in 8,,,.) In other words

X H = ¢t + Fildh, ..., dh). (4.21)
So the constraints at step p+1 are defined modulo the constre;ints fromsteps 1,...,p
Ol’ll}I} the function G is taken to be

G=E24" (4.22)

for some Bj to be determined, then condition {4.14) 1s automatically satisfied. In that
case, XgH can be expanded in terms of the constrainis using {4.21) as

XoH = (Xp: H )L+ By (i + Fildg, ..., $8)). (423)

Using this resule, and with new symbols By defined to be zero, the general expression
(4.18) reduces to i

Lo df - X H dr) =~ X6t (ng + (th_l +BE %m*s;) d*r) (mod Siy).
(4.24)

Hence a vector field
Z =A%+ Xgng? (4.25)
where the functions A” and B satisfy
aF3

dEH(BLﬁBﬁE,;-M“EL) dr=0 (mod ) (4.26)
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is an isovector of the closed involutive system S,,, (4.10}, and thus generates a symmetry
of the equations of motion.

The equations (4.26) are in echelon form: the B;., are fixed by the B/, and the
A“ are fixed by the By. However, the B for the maximum value of p are completely
arbitrary. Since there is one of these arbitrary B, for each primary constraint &L, it
follows that there is an independent isovector Z for each first-class primary constraint,
as promised.

In general, the isovector Z ohtaned from (4.26) will not be independent of the
Dirac multipliers v® because of the dependence of the functions F;, through (4.21).
In fact, to solve {4.26) exira 0 or 1-form conditions must be introduced relating do®
to dp,, dg° and d=, and the resulting B define an isovector field only for integral
manifolds which satisfy these additional conditions. This means that the isovector
fields generating symmetry transfoimations starting from different solution curves will
in general be different. To obtaimn isovector fields which generate symmetry transforma-
tions regardiess of the starting curve, the functions B}, and A* can be taken to be
independent of the v™.

This iz achieved by requinng

d aFg
—_— = dié? 4.27
7 9 (mod{sZ}) (4.27)
which, expanding {4.21}, in turn requires that
o
= [h, d5]=0 (mod{¢3}) (4.28)
8y

Roughly speaking, this says that [¢%, ¢3]=0 to order (¢). Such a requirement can
be satisfied, at least locally, by Abelianizing the constrainis (Goursat 1959). However,
this will disrupt the hierarck  of constraints, modifving equations (4.1%) and {4.21) to
give

Xy H=Fa(¢g) (4.29)

where the right-hand side depends upon all of the constraints now. Following this
change through gives ancther set of coupled equations similar to {4.26) except that
the echelon structure is lost. MNevertheless, the degree of arbitrariness in the soiutions
is unchanged: there is one independent isovecior for each first-class primary constraint.

Alternatively, if the v® independence reguirement is relaxed slightly so that only
X is required to be independent, not all of Z, then the conditions (4.28) can also be
relazed slightly to

5

a3
In this case, the do® do not zrise 1a solving equations (4.26), so the resulting isovector
field is valid for all solutions. Tlus 15 the result usually quoted.

(62, ¢p1=0 (mod{4Z}) o=2,3, .. (4.30)

8. REDUCE impletnentation

One of the advantages of the exterior gystems spproach to the tyne of problem
considered here is its algorithmic nature However, the calculations can easily involve
large expressions and become guite tedious, so this approach is 2 good candidate for
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implementation in 2 computer zigebra package. The authors have developed a series
of programmes to perform some of the caleulations using REDUCE (Hearn 1987),
and particularly the EXCALC (Schriifer 1986) exic.ior calculus and GROEBNER
{Mslenk et al 1988) Grocbner basis packages. These programmes will now be described
brisfly. Another programme which analyses exterior systems for their solution has been
described elsewhere {Hartley and Tucker 1991).

The first procedure is called AMEND This is a routine for performing the prolonga-
tion and projection sequence mentioned in section 2. AMEND is slightiv more general
than is needed here because it is designed for p-dimensional problems, where the
independence form is replaced by & set of p independence i-forms.

AMEND takes an exterior system of forms, a coframe for the space Y, and a set
of independence 1-forms. The Grassmann bundie of p-planes over ¥ is construcied
first, and fibre coordinates {I"} for the patch consisting of planes in mvolution with
the independence forms are generated, as well as the corresponding contact system.
A set of equations for the fibre coordinaies is obtained by requiring that the p-plane
be a solution of the exterior system. These equations determine an algebraic variety
in the Grassmann bundle. If these equations can be solved for the I” alone, then the
original exterior system is prolonged by pulling back the contact system of the Grass-
mann bundle to 2 submanifcld in the algebraic variety. If the variety equations cannot
be solved for the [” alone, then the projeciion of this variety onto the base space is
not onto. This is the signal that the space ¥ can be reduced by suiving those variety
equations which remain after all {I*} have been ehminated The original sysiem is
reduced by pulling it back to the smaller space. If reduction is required, then there
couid be nonlinear equation: to be solved, in which case AMEND selves as far as it
can, and returns the remaming (unsolved) conditions 1o be dealt with by hand.

In botk prolongation and reduction, ii is possible to show (Kuranishi 1957, Griffiths
1982) thai the soluiions of the amended sysiem give rise to solutions of the original
system, and that after a finite number of repetitions of the procedure, an involutive
system will be obtained, unless the system has no solutions at ail.

if the aim 15 to produce an involutive system on Y, without maoving to another
space, then a routine called CONSTRAINTS can be used. Curremly, this routine is
restricted to the one-dimensional problems discussed earlier. In CONSTRAINTS, the
Euler-Lagrange system is brought into involution by using the scheme described at
the end of section 3: the system is checked for involution, any O-form involution
conditions discovered are appended ic the systera, together with their exterior deriva-
tives, and the process is repeated. There is some difficulty in perfoiming the calculation
autcmatically, because involution must be checked moduloe the existing G-forms (2.12).
‘These are generally nonlinear expressions, so the programme uses Groebner bases and
a few special manipulations to perform this check. While this allows a wide variety of
problems to be tackled, it also imposes some resirictions: if the expressions involve
anything other than polynomials or square roots, then some relations may be overlooked
unless they are added by hand. This is, of course, no different 1o the problems
encouniered in hand calculations. Particular nonlinear problems require specific treat-
ments.

As an exampile of the application of these programmes, consider the problem of
finding a time-like curve in Minkowski spacetime which optimizes the action for a
Lagrangian L(x,, s} where 1, and «, are the acceleration and torsion of the curve.
This generalizes a problem that has attracted some attention in the recent literature.
1t offers one of the simplest descriptions of a relativistic particle whose dynamics
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depends on bodh the intrinsic and extrinsic geometry of an immersion {Dereli er
1980, Nestersnko 1990, Gomis ef al 1991). The preblem may be 2t up on an
<xtended orthonormal frame bundle Y = OM xR® over four-dimensional spacetime
M, with coframe {e”, 0", dw.} (&, 5=0,1,2,3,a=1,2,3) where the {e®} deter-
mine an orthonormal coframe on M and the {w"s} are the corresponding
cornectior  i-forms. The consiraint sysiem can be taken as {#'l=
{e', e &%, 0%, 0%, 0’|, 0% — k;e", '+ 102", 0+ k3e"} and the independence form
w = ¢’ This determines a set of bime-like curves in ¥ which are 1ifts of curves 1n M
Using the structure equations of the frame bundle and the constraint system, it can
be seen that the vectors in the frame { N, } dual to { e } satisfy the Frenect -Szrret equations

Vw-Ng=wyN;

V nadVs = sy No+ i, N
Vel = =5 Ny H i Ny
Vo, M= —ks N,

{51

where restriction to the ume-hike curves having unit tangent N, is imphed. Thus {8'; 2%}
determines a set of time-like curves for which {e”} defines 2 Frenet coframe and {x,}
are the Frenet eurvatures.

In this partially coordinate-free problem, the I-form 4 is

A=L{x, k)" +pb’ (5.2)
and the resulting Buler-Lazrange system is
e, et e, w0l el
w8’ w'y ngﬁ w2+ kse®
dp, — (k1 L parea — sy (Poicy ‘Pus_P9K3))€0
dpst (prxea = p3x3)e”
dps+ parese®
G+ {pa—Psis+ pra ~ Paicy e
aps— {2 - paks— Peiy )’
L ‘ N (5.3
AP TAPs ™ Poltz ™ Pzl e
dpr+(py~ parcs) e’
dpe+ (pas; + porcs)e®
dps = poicse”
{L,—pr)e
(I—uz'l“Ps}?o
Pac”,

This exterior system may be written as a set of coupled ordinary differential equations
by using proper time 7 and writing 2°=ds. Note that the eguations decouple into
disjoint sets, so that the equations for {«,} may be solved first, and their solutions
used 0 construct the Frenet coframe.
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Analysing this system with AMEND, assuming L, .. is non-degenerste gives a
reduction at the first stage, using

p'f = LK; pB = _Lx2 Pg = O. (5.4)

At the second stage, two branches arise from the equation pgi, =0, and they must be
followed separately. First

Ps=0 {5.5)
leads to
psr— Loy =0 (5.6)

which, when solved for any of the variables, gives a system in involution. On the other
branch,

Ky=0 (5.1
leads to
Plelxz~(P4K1+p6'(3)l‘mm =0 (5-8)

which, when selved for any of the variables, also gives a system in involution {as long
as L., #0 when x,=0}.

Processing the same system with CONSTRAINTS gives the same sei of equations,
iz much the same way. A facility has been incorporated in CONSTRAINTS to allow
the user to specify certain expressions which will be assumed not (o vanish, and which
may therefore be cancetled as a factor in any constraint. In this way, it is possible to
follow through the separate branches mentioned above First of all, the ‘primary

constraints’ (5.4} are added These generate two ‘velocity equations’

Adwy,+(p Lo, —palics Ly o+ :<2LK:K2))e° (5.9)
Adus—(p1 L, — Paliei Ly, + KZL.qxz))eo
where
A=detL,,, (5.10)
and the constraint
Psiz. (5.11)

Taking the firsi brasch using the constraint (5.5) yields (5.6) as a secondary constraint
and a further *velocity equation’

Ly dreg - (pate, b+ skt pi sl ~paps(s1 L 12 Ln;uz))eo' (5.12)

The corresponding resulis are obtained for the second branch.
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