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J Phys A Math Gen 24 (1991) 5253-5265 Pnnted I" the UK 

~~~~~~~~~ dyasmim and exterior 

David Hartleyi, Robin W Tucker$ and Philip A TuckeyB 
Sckool of Physics and Matenals, University of Lancaster, Lancaster LA1 4YB, UK 

Recewed 24 June 1991 

Abstract. The Dirac analysis of constrained Hamiltonran mechanics is one of the conven- 
tional precursors to the quantization of CIPS$TEBI systems In this paper the amlyysts ts 
reformulated m the language of ertenor differenttal systemr, startmg from the Lagranpian, 
moving through the generauon of pnmary ana secondary con~traints and leadmns to the 
~onstmction of Symmetry genecaton for gauge symmemer. Thls reformulatmn extends the 
procedure io con-coordinate systems. Acomputer algebra impIemcntzXion of the procedure 
in REDUCE is also dercnbed 

1. btFOdBlEtiOQ 

Of the various methods of quantization the canonical approach provides a comprehen- 
sive and powerful formalism, particularly for constrained systems. Since symmetnes 
play 2 dominant role in Nature such systems occur frequently and the classical canonical 
formulation has proved to he a well respected precursor to any attempt at quantization. 
A systematic procedure for analysing problems based on possibly degenerate 
Lagrangians has been given by Diracand his work forms a cornerstone of most modem 
developments. Rather ihan remove redundant variables, implied by the symmetries 
inherent in the description of a problem, Dirac provides an algorithm for constructing 
a chain of constraints together with 2 Hamiltonian that describes both the dynamical 
evolution of the system as welt as its gauge freedom. Although in practice the detemina- 
tion of the constraint structure can he 2 tedious procedure and the classification into 
first- and second-class constraints a non-triviai problem the method is conceptually 
straightfow~ard end may be generalized in principle to fieid systems. Modem develop- 
ments based on the techniques of symplectic reduction and BRS methods owe much 
to Dirac's pioneering efforts in this direction. Symmet~es of dynamical systems provide 
much of the data for the standard classical BRS descnption based on such reduction 
techniques. Much esort has been spent recently in finding the local symmerry generators 
corresponding to a set of first-class constraints in Dirac's teminology. There is some 
subtlety in giving a comprehensive description of such generators and we address this 
problem in the following. 

We have found it useful to reformulate Dirac's procedure for analysing 2 constrained 
dynamical system in the language of exterior diserential systems. The basic idea is to 
recognize that the solutions of a (constrained) dynamical problem can be put into 
correspondence with a class of integral manifolds of a dosed involutive exterior 

5253 



5254 D Hart/ey et a/ 

differential system. Such a reformulation offers one a number of advantages These 
include the analysis of higher-order problems where the Lagrangian depends on 
higher-order accelerations, and coordinate independent problems in which the con- 
straints arise naturally from the underlying geometry of the problem. We illustrate this 
generahty with an example from the theory of relativistic elastica. Furthermore, for 
systems that exhibit a symplectic structure, it is straightforward to generate equations 
for the local symmetries corresponding to first-class constraints using the nntior. of an 
isovecfor. 

2. Ealer-Lagrange system 

The basic setting used here for variational problems in mechanics is as follows. Let X 
be an n-dimensional manifold, {e'} ( I  = 1,2, . , r j  be a set of I-forms on X, and let 
OJ he P further 1-form on X, with o A 8' A A e '#  0 at a!l points of X. The {e'} wr:l 
be cailed the constraini system and o the independenceform. Together, they specify a 
sei if} of integral mangolds: one-dimensional immersions j: C + X satisfying 

f * s ' = o  (2.1) 

j"o # 0 (2 21 

and 

at all points of C. 
For example, for Brst-order variational problems on a configuration space Q with 

'coordinates {g'} and an evolution parameter r, X would be the jet bundle .I1(@+ Q) 
with coordinates { ~ , q ' ,  $}, the constraint system would be the contact system {e '=  
dq' - q' dT} and the independence form would he o = dr. The resntting immersions 
are sections of the jet bundle of the fonn 

As another example, the manifold X for a typical non-coordmate problem might 
be an orthonormal frame bundle OM over four-dimensional spacetime M, with coframe 
{e", w e p }  (a, p = 0,1,2,3) where {e"} determims an orthonormal coframe on M and 
{omp} are the corresponding connection I-forms. Here, a constraint system {8 ' )=  
{e' ,  e', e'] and an independence form w = eo determine a set of time-like cumes in 
QM which are liRs of curves in M For which the {e"]  define a Darboux coframe. A 
development of this example is treated in section 5.  

Within this basic setting, a variational problem is given bj specifying a 1-form 9 
on A' and requiring that the action 

i 9  (2.4) 
JflCI 

be stationary under variations of the immersion f which preserve the constraint system 
and independence condition. Thai is, the problem i6 to and thosef amongst the set 
determined by {e'; w }  for which the action is stationary. In this paper, we arr not 
concerned with end-point conditions. It has been shown (Gr%f& 1982) that the 
condition that f must satisfy IS 

f ^ i v  dA = 0 for all V E  T ( X )  (2 5)  
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where 

A = q +p,B' (2.4) 

and the p ,  are functions on X to be determined. 
Following Gri5ths, it is useful to extend the manifold X to Y = X x R', introducing 

the {p , }  as r new coordinates rather than functions to be determined during solution. 
The immemions f lift to immersions into Y, which will continue to be denoted by f: 
The exterior differential system 

§ = (iv dhJVE T(Y)} (2.7) 

with independence form o will be called the Euler-Lagrange system 
Continuing the coordinate example for a first-order variational problem with 

configuration space Q, suppose the action is specified by a Lagrangian L(q', 4'). The 
I-form 9 is then 9 = Ldr and the Euier-Lagrange system S is 

[dq'-q'dT 

1 (pc - L4.) d.;. 
S =  dp,-L,*dT (2.8) 

Here L,s=aLlaq' and so on. Solving the thxd of these for the coordinates p ,  and 
substituting into the first gives a system of 1-forms 

dq' - q' d r  
dL,. - 5,. dT 

whose solutions satisfy rhe usual Euler-Lagrange equations. 
There is no difficulty in generalizing to Lagrangians which contain higher-order 

derivatives of the configuration variables. For a pth order problem, the iirstp2t bundle 
is replaced by P ( R -  Q),  with contact system {dq'"" -qtr+')' d~}, where {q""'} are 
jet bundle iihre coordinates, and U = C ,  1, . . . , p - 1. The Euler-Lagrange system (2.7) 
yields the - w ~ a l  Euler-Lagrange equations for higher order problems. For details of 
this and other examples, see Griffiths (1982), Hartley rad T~cl ier  (1990). 

3. C O ~ W ~ C ~ Q ~  anaEysis 

In this section, the coordinate-based example descnbed in section 2 is used to motnae 
a method cf generating ?he dynamical constraints for a general Euler-Lagrange system. 

The key concept is tha? of inuolutaon of an exterior differential system on Y mth 
respect to the independence form w. For the class of problems considered in this paper 
(where o is a 1-form), this IS ?he condition that 

w A u # O  (3.1) 
for all t-foims o in the exierioi system at al! points on Y where all C-forms in the 
"J"."" " P L L L I I I .  11" , ,Y I IYLLL"I I  al"g1Sb " Y I  tll"bS 5VIUII"DS 01 ,"e enrerlor oEmrr;nua* 
system for which o corresponds to an ind-:pendent e olution variable. 

In the case of the exterior system (2.8), the foms 

.̂,"1..* .."..:̂L 7%:- ",.-A..:-- -:--I-- -... .L-.. .. ,... - -  .c .e. ~ :lm ..... ... 

The Euler-Lagrange system (2.7) does not generaily satisfy the involution condition. 

( P , - & )  dr (3.2) 
are clearly not in involstion with the independence form d.r. 



5256 D Hartley er a/ 

One approach to solving this problem is to solve the coefficients of d r  in the 
offending 1-form% for some of the vanables, say the {p ' } ,  and eliminate those variables 
from the rest of the system. pulling hack to X with exterior system (2.9). Expanded 
in terms of the cofiame of X, this reads 

dq' - 4' d r  
{L& dqJ-(L,,-Lq,.,iqJ) d?. (3.3) 

(E has been assumed here that L does "et d e p e d  exp!icit!y on 7. T'me=depe-e-de-t 
Lagrangians can be accommodated by parametnzation if required.) if the Lagrangian 
L is degenerate, so that det(L,;J)=O, then this new system on X will not be in 
involution either. as there will be linear combinations of the second set of forms giving 
rise to forms proportional to dT. In this case, the procedure must be repeated, solving 
for some more variables and pulling back to a smaller space, until an involutive system 
is found. 

For a general exterior differintial system, this approach mirrors the process of 
prolongation of the system to establish a solution submanifold of  the Grassmann 
bundle C( m: O J )  followed by a projection of this submanifold back down TO Y and a 
pullback of the system onto the resulting submanifold of Y. This procedure is detailed 
in Gri5ths (1982). 

Returning to the system (2.81, the conventional approach to finding the correspond- 
ing quantum theory, following Dirac (1950), uses a somewhat different analysis. First 
a Legendre transformation is made to give the Hamiltonian theory, using the conditions 

pc - L,. = 0. (3.4) 
These are solved for as many as possible of the q', which are then eliminated from 
the Namltonian 

f f = p , q ' - L  (3.5) 

If the Lagrangian is degenerate then some of the conditions (3.4, denoted L, will 
remain after the elimination, dependent on the {q ' ,p , }  only. These are termed the 
primary conslraiilfs. For each primary constraint, one velocity coordinate q" appears 
explicitly in R (The primary constrants are not used to simpfify H.) Rather than solve 
the pnmary constraints for some of the {$, p,}, they are appended to the Hamilton 
equations of motion as further equations, giving an extended set which must be satisfied 
by any solution: 

PI 
$=ff 

j, = - N,. (3.6) 

= 0. 

( n e  first set of equations is trivial ( q =  = 4")  for those velocities which could not be 
eliminated.) Consistency ofthis extended set of equations then requires that the primary 
constraints be preserved under evolution, which can lead to the generation of further 
independent equations. Some of these may yield solutions for some of the remaining 
velocities {q" } ,  the rest being new constraints. The new velocity solutions replace trivial 
ones in (3 .6) ,  the new constraints are appended i o  the extended set of equations, and 
!he procedu:e is repeated until consistency is achieved. 

3.e ane!ysis in !his Birac procedure is usua!!y simplified (once the piimary con- 
strams are obtained) by an adjustinent in which the remaining velocities {qel are 
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eliminated in favour of a set of Dirac multiplrers {U"} in such a way that the Hamiltonian 
(3.5) takes the form 

H = If,+ U"$, (3.7) 

where ,pa are the primary constraints and ~H,Ji,latF =O. However, it is not necessary 
to make this change for the purpose of generating the secondary constraints. 

In term of exterior systems, the above procedure may he described as follows. 
me I-fom i\ on Y with 8' = dq' - 4' dT and 'p = L d?. can be rewritten using the 
Hamiltonian (3.5) as 

A =  -If dT+p, dq'. (3.8) 

The Euler-Layange system (2.7), (2.8) becomes 

dq' - H ,  dT 
S =  dp,+H,*d.r ( 3  9) i Hqc d7 

Solving as many of the equations H,.=O as possible for the ( 4 ' )  and pulling hack 
using those sofutions leaves a system 

dq'- H ,  d?. 
dp, + H,, d r  (3.10) 

[ A  dT 

in which some of the q' have been eliminated in I f ,  and H,.  . This system is clearly 
not in involntion with d7 Rathei than solve the 4- to c,vercome the involution problem, 
they can simply be appended to the exterior system as 0-forms, giving 

S' = dg' -AY,. dT (3.11) 
[::,+Ifqadi 

Since 5*4= = 0 implies that f *  d& = 0 afso. it is necessary to close the system under 
exterior diSerentiation by including the I-forms d+= as well, and then re-examine the 
involution condition. Since the & depend solely on the {qz,pz}, d+- can be rewritten 
as 

d+,, =,ym d7 (mod S'), (3.12) 

(This means that the expressions in S' have been lased to simplify d&.) If any of the 
x- are independent of the then S' does not give a closed involutive system. If this 
is the case, then some ofthe ,& may yield solutions for some of $he remaining 4", bu: 
the res1 are new constraints. ?he 4" solutions may be used to pull back to a smaller 
space and the new constraints appended as further 0-forms to the system By repearing 
this procedure until involution IS achieved, the Dirac constrzint analysis is reproduced. 

For non-coordinate problems, it may no? be possible to make a distinction between 
I-forms corresponding to configuration variables {q') and those corresponding to 
velocities {4'). To extend the constraint analysis to these problems it is necessary 
to overcome this diDiculty. To do this, it may be noted that It i s  no more necessary to 
solve for the q' at any stage of the procedxe than it is io solve €or the q' or p.. i t  is 
possibie simply to append Q O  of the 0-form involution conditions to the system at each 
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step without distinguishing between constraints and velocity solutions. This time, 
including the exterior derivatives of the 0-forms in the system will lead to some I-forms 
containing dq' terms as well as new involution conditions. These new 1-forms are jus. 
the exterior derivatives of the previous velocity solutions. 

Thus the constraint analysis procedure for the general problem is as follows. Start 
with the Euler-Lagrange system (2.7) and check if it is in involution with the indepen- 
dence form o. If it is not, then append the involution conditions as 0-forms to the 
system and include their extenor derivatives. Check this extended system for involution 
and repeat until an involutive system, closed under exterior differentiation is achieved. 

4. Symmetry generators for first elass cmstraints 

In the conventional language of the Dirac formalism, the first-class constraints of a 
Hamiltonian system give rise to the generators of local symmetry transformations. The 
precise meaning of this statement has been examined in the literature (see, for example, 
Gram and Pons $988, Gomis er a1 1990. Henneaux et al 1990). For a local symmetry 
transformation, there must be a family of generators parametnzed by an arbitrary 
function ofthe evclution variable r. In the language of extenor systems, transformations 
between solutions of the system are generated by isouecfors of the system. These are 
vector fields V which satisfy 

Lf./SSS. (4.1) 

The purpose of this section is to establish the connection between first-class constraints 
and families of isoveciors for extenor differential systems. 

According to  Dirac, there is a local symmetry conesponding to eacb primary 
Srst-class constraint. This should translate to a family of isovectnrs of the exterior 
sysiem for each primary first-class constraint. 

It is convenient here to follow the usual practice and tiansfnrm the unsolved 
velocities {q"} into Dirac multipliers {U"}, writing the Hamiltonian as in (3.7). 

After carrying out the constraint analysis descnbed in section 3 and eliminating 
all of the un For which solutions become available, the final involutive system contains 
pnmary Constraints {&} and possibly secondary constraints {X,,} generated during the 
analysis. This system resides on some manifold Y,,  . 

Pulled back to Y,,,, the 1-form A stili has the form 

(4.2) 

d A =  -dHndT+il  (4.3) 

61 =dp, ndq' (4.4) 

* - - r J ,4-1 , .  2"' 
A > - - ' ' U ,  * y , u y  

so that 

where 

gives a symplectic forn, on submanifoids of Y,"" where r is constant and the v e  are 
given by arhitrsnrily prescribed functions. 

For any function f on Y,,,, df can he expanded as 

df = f, dr + f,- do"+ & (4.5) 

&i=P,, dq'+fp,ddp,. (4.6) 

where 
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A corresponding vector field X, on Knv can be defined by 

i$=& rx,dr=iX,dvm=O. (4.7) 

[1; gl = ix, ix$ = z x , g .  

This gives a Poisson bracket on functions 1; g on Knv defined by 

(4 8) 

This allows the division of the constraints into first and second class in the usual 
way. It is not necessary for the present caiculation to consider systems with second-class 
constraints: the considerations for systems with only Brst-class constraints extend easily 
to the more general case (for a nice proof of this see Gomis et ai 1990). So atteniiou 
below will be restricted to systems with first-class constraints only. These satisfy 

[1;91=0 (mod{&, x J  for a l l ~ g ~ { & , x h l  (4.9) 

One consequence of thls is that no solutions for the Dirac multipliers {U"} arise 
during the constraint analysis. The involutory system SI,, on Y,,, can thus be written 

(4.10) 

Its integral manifolds f :  C +  'y..,.. have ( f * v " j  as arbitrary functions on C. 
Consider a Socal diffeomorpbism generated by a vector field Z of the fonn 

2 = AaaD*+XG (4.11) 

for some functions A" and G on K,,. (No a, term bas been included in Z because 
difeomorphisms which move along the same solution are not of interest here.) In 
order for Z to be an isovector of §>;,,, , it must satisfy 

(4.12) 

(4.13) 

For the firsi of these, 

&g=[Ggl (4 14) 

since d,-g=O, so (4.12) implies that &e function G must be first-class. 

by combinzng them 10 give 
The second and third conditions are "ery similar, and may be dealt with together 

ZZzidf-X,H d7) = 0 (mod S,,,) (415 )  

for all f such that 

af jar=af /ave  =o. (4.16) 

For such Functions f, df = 5, so it follows that 
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A shon calculation shows that 

2,ea,(df-X,H dT)=-(ArrJ,,*Xfd(Hot U'&)) d r  

= -(A"Xf&) d r  

since by (4 7) a,- and Xf  commute. Also, 

-%e,(df-XfH dT)=d(X,f) -(X,&ff) d7 

= d[G,f] -(XfxoH) dT-XC,,111 dT 

=-X,GC,dr-XfG.=dv~-XfXOHd~ (modS,,,) 

using (4.3, (4.17) and the Jacobi identity Thus 

~ ~ ( d j - X , H d T ) = - ~ ~ , ( G , .  dv"+(G,+X&+A"+,)dT) (modS,,,). (4.18) 

For Z to be an isovector of S,,,, the right-hand side of (4.18) must vanish. Suitable 
functions G and A" may be constructed from the constraints as follows Relabel the 
constraints. denoting them coilectively by where {+:} are :fie primary constraints 
{&}, {&I are the secondary constraints generated from the primaries, and so on. If 
the constraints have been generated stepwise as in section 3, then there will be a set 
of relations 

(4.19) d+P = (+P,"+F'(+h, . . . , +;)) d? (mod S k )  

where 

FZ(+h, .. . , +;)=o (mod &, . . ,b;) .  
(In (4.19) S:, denotes the I-forms in S,"".) In other words 

(4.20) 

Xd~K=~Pt'+FP(+p;,,...,~;). (4.21) 

So the constraints at step p + 1 are defined modulo the constraints from steps 1,. . . , p 
only. 

If the function G is taken to be 

G=B,"+: (4.22) 

for some 5," to be determined, then condition (4.14) is automatically satisfied. In that 
case, XoH can be expanded in terms of the conetrainis using (4.21) as 

, Y , H = ( ~ ~ ~ N ) $ P + B , " ( $ ~ + I + F ~ ( d . ~ ,  . . . ,$:)). ( 4 W .  

Using this resuli, and with new symbols 5," defined to be zero, the general expression 
(4.18) reduces to 

2ZZ(df-XfHdr)=-X,+P L?,_,+Bf2+A^6; "" ) d r  ) (mod sd. -' 
J@P, 

(4.24) 

Hence a vector field 

Z =A"J,-+Xq& 

where the functions A" and B," satisfy 

(4.25) 
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is an isovector of the closed involutive system Sn.. (4.10), and thus generates a symmetry 
of the equations of motion. 

The equations (4.26) are in echelon form: the B,"-, are Exed by the B,", and the 
A" are fixed by the Bf. However, the B; for the maximdm value of  p 2re completely 
arbitrary. Since there is one of these arbitrary B," for each primary constraint $:, it 
foilows that there is an independent isovector Z for each first-class primary constraint, 
as promised. 

In general, the isovector Z obtained from (4.26) will not be independent of the 
Dirac multipliers v e  because of the dependence of the functions FE through (4.21). 
In fact, to solve (4.26) extra 0 or 1-form conditions must he introduced relating do" 
to dp,, dq' and dr, and the resulting B," define an isovector field only for integral 
manifolds which satisfy these additional conditions. This means that the isovector 
fields generating symmetry transfu.;;;-'ions starting from different solution curves wili 
in general be digerent. To obtain isovector fields which generate symmetry transforma- 
tions regardless of the starting curve, the functions B,", and A" can be taken to be 
independent of the U*. 

This is achieved by iequinng 

a aF,"-O (mod{QP,}) 
JV' a$$. 

which, expanding (4.211, in tum requires that 

a 
-7 ECL &=0 (mod{CP}J 
ar i y  

(4.27) 

(4.28) 

Roughly speaking, this says ?hat [+E, +b]=O to order (C)'. Such a requirement can 
be satisEed, at least locally, by Abelianizing the constraints (Goursat 1959). However, 
this will disrupt the hierarcb. of constraints, modifying equations (4.15) and (4.21) to 
give 

X+:H=FX$;) (4.29) 

where the right-hand side depends upon all of the constraints now. Following this 
change through gwes another set of coupled equations similar to (4.26) except that 
the echelon structure is lost. Weverzheless, rhe degree of arbitrariness in the soiutions 
is unchanged: there is one independent isovector for each first-class primary constraint. 

Alternatively. if the om independence reqi?irement is relaxed slightly so that only 
X ,  is required to be independent, not ali of 2, then the conditions (4.28) can also be 
relaxed siighsly to 

a 
ab; 
- [CL 4 1  = o  (mod{+:}J r = 2 , 3 ,  .. (4.30) 

In this czse, the do" do not er'se 1% solving equations (4.26), so the resulting isovector 
field is valid for ail solutions. Thir IS the resuk usually quoted. 

S. EEDUCE implemestatioe 

One of the advantages of the extenor systems cpproach to the type of problem 
considered here is its algorishmic nature However, ehe calculations can easily involve 
large expressions and become quite tedious, so this approach is e good canndidaee for 
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implementation in a computer zlgebra package. The authors h w e  developed a series 
of programmes to perform some of the calculations using REDUCE (Heam 1987), 
and particularly the EXCALC (Schriifer 1986) extaior calcuius and GROEBNER 
(Melenk et a1 1988) Groebner basis packages. These programmes will now be described 
briefly. Another programme which analyses exterior systems for their solution has been 
described elsewhere (Hartley and Tucker 1991). 

‘The first procedure is called AMEND This is a routine for perfowing the prolonga- 
tion and projection sequence mentioned in section 2. AMEND is slightly more general 
than 1s needed her2 because it is designed for p-dimensional problems, where the 
independence form is replaced by a set of p independence 1-Corms. 

AMEND takes an exterior system of forms, a coframe for the space Y,  and a set 
of independence 1-forms. The Grassmann bundle of p-planes over Y is constructed 
first, and fibre coordinates { I ” )  for the patch consisting of planes in invoiution with 
the independence Corms are generated, as well as the corresponding contact system. 
A set of equations for the Bbre coordinates is obtained by requiring that the p-plane 
be a solution of the exterior system. These equations determine an algebraic variety 
in the Grassmann bundle. If these equations can be solved Cor the 1” alone, then the 
original exterior system is prolonged by pulling back the contact system of the Grass- 
mann bundle to a submanifold in the algebraic variety. If the variety equations cannot 
be solved for the 1’ alone, then the projection of this vanety onto the base space is 
not onto. This is the signal that the space Y can be reduced by sdving those variety 
equations which remain after all { I ” }  have been eliminated The original system is 
reduced by pulling it back to the smailer space. If reduction is required, then there 
could be nonlinear equation: to be solved, in which case AMEND solves as far as it 
can, and reium5 the remaining (unsolved) conditions to be dealt with by hand. 

In both prolongation and reduction, il is possible to show (Kuranishi 1957, Griffiths 
1982) that the solutions of the amended system give rise to solutions of the original 
system, and that after a finite number of repetitions of the procedure, an involutive 
system will he obtained, unless the system has no solutions at all. 

If the aim 1s to produce an involutive system on U, wilhout moving to another 
space, then a routine called CQI?§T€WINTS can be used. Currenrly, this routine is 
restricted to the one-dimensional problems discussed earlier. In CONSTRAINTS, the 
Euler-Lagrange sys?em is brought into involution by using the schr“ described at 
she end of section 3:  the system is checked for involution, any 0-form involution 
conditions discovered are appended to the system, together with their exterior deriva- 
tiv$s, and the process is repeated. There :s some difficulty in perfoiming the calculation 
aotomaticaily, because invoiution must be checked modulo the existing 0-forms (3.12). 
These are generally nonlinear expressions, so the programme uses Groebner bases and 
a few special manipulations to uerform this check. While this allows a wide variety of 
problems to be tackled, it also imposes some restrictions: if the expressions involve 
anything other than polynomials or square roots, then some ?elations may be overlooked 
unless they are added hy hand. T h i s  is, of course, no different IO the problems 
encounieFed in hand calculations. Particular nonlinear problems require specific treat- 
ments. 

As an exampie of the application of these programmes, consider the problem of 
finding a time-like curve in Minkowrki spacetime wbich optimizes the action for a 
Lagrangian L(K,, x 2 )  where K, and K~ are the acceleration and tor,cion of the curve. 
This generalizes a problem that has attracted some attention in the recent literature. 
It ofiers one of the simplest descriptions of a relativistis particle whose dynamics 
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dereids on both the intriiisic and extmsic geometry of an immersion (Dezeeii et dl 

1990, Nebterenko 1990. Gomis er al 1991). The problem may be FZ: up on an 
rxtendcd orthonormal €tame bundle Y = OM X K!' over four-dimensional spacetime 
M, with coframe (e", wmS,  dKa} (a ,  p = 0.1,2: 3 ,  a = I, 2,3) where the ( e " )  de:er- 
mind an orfhononnsl coframe on iM and the (w"sj  arc the corresponding 
cocnectior. I-forms. The constraint system can be taken as {e'}= 
{e' ,  e2. e;, wo2. w 0 3 , ~ 4 1 ,  w O , - ~ , e ' ,  w ' , + ~ , e ~ ,  w2,+K3e0) and thz independence form 

Using the structure equations of the f r a m  bundle and the constrain? system, it can 
beseenthaithesectorsinthe frame ( ~ ~ ~ ~ d ~ a l t o ( e ~ ~ s a t ~ s ~ ~  the Frenet-Serreiequations 

0 =,U; TIUS &terminer a set of ilmc-like curves in Y which are lifts of cuyupg ?? M 

V,.N,= K,N, 

V , , N , = K , ~ ' ~ + K ~ A ~  

V N o N > =  -':2&-l+K3N; 

VN"I.I? = - K I N 2  

where restriction to the rime-iike cdrves having mi? tangent ArO is impl?ed. Thus { 6': eo) 
determines a set of time-like curves for whifh {e") d&~es a Frenet coframe and ( K a }  

are tbe Frenet curvatures. 
In this partially coordinate-free problem, the l-foornr A is 

n = i i ~ , , ~ 2 j e ' i p , b ~  (5.2) 

and the resulting Euler-harange system is 

e', e', e3, w";, U',, el3 

0 0 ,  -'.,ea U',+ K 2 2  o', + K3eo 

dSP! - ( K,L+Pzr:, - Kj (F71Ci - P ~ K ~ - P ~ K J ) ) ~ O  

dPz+ (FiKz-p,K3)ec 

dp, +p2ic,eo 

~ ~ , + ( P ~ - P s I ( I + P ? ' ~ ? - P ~ K ~ ) Z '  

~ P S -  (25 L ~ + ~ 2 - ~ 6 ~ i ) e U  

dp, + ipszi, - psx, 

dP7+@I --PJK2k0 

ea 

dp,+ (P~I :~  + P ~ K ~ ) ~ O  

d.v9 - p 6 ~ 2 e o  

iEx, -p , )eo  

(L,,+pM' 

W O .  
This exterior system may be written as a sei of couplcd ordinary differential eqvations 
by usiny proper time r and writing zo=d.r. Note ?hat tbe equations decouple into 
disjoini sets, so that tits equations foi [ K ~ ]  may be solved first, and their solutions 
UDGU I" C"U*UEL(i, LIZ$- rreger coframe. .."..A -~ _.-. -L. --.~~-- 

(5.3) 
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Analysing this system with AMEND, assuming L,<,, is non-degenerate gives 
reduction at  the first s:age, using 

F7 = L,, P8 = -La pu = 0. (5.4) 

At the second stage, two branches arise from the equation 
followed separately. First 

= 0, and they must be 

PS'O 

leads to 

P S K I  - LKI= 0 

which, when solved for any of the variables, gives a system in involution. On the other 
branch, 

K 2 = 0  (5.7) 

leads to 

PIL,,,,-(F~K,+P~~(~)L~,~~ = O  (5.8) 

which, when solved Tor any of the variables, also gives a system in involution (as long 
as L,,,,fO when x2=0). 

Processing ihe same sysiem with CONSTMiNTS gives the same set of equations, 
in much the same way. A facility has been incorporated in CONSTRAINTS to allow 
the user to specify certain expressions which will be assumed not lo vanish, 2nd which 
may therecore be cancelled as a fzctor in any constraint. in this way, it is possibile to 
follow through the separate branches mentioned above First of all, the 'primary 
constraints' (5.4) a:e added These generate two 'velocity equations' 

(5.9) 

where 

A = det Lxekb (5.10) 

and the constraint 

P 6 b .  (5.11) 

Taking the first branch using the constraint (5.5) yields (5.6) as a secondary constraint 
and D further 'velocity equation' 

L.,,,A ~ K ~ , . - ( P , I C , A ~ - P ~ K ~ K ~ A + ~ ~ P ~ ~ , ~ ~ , ; - P ~ P ~ ( K I L , ~ ~ ~ : +  d+dko. (5.12) 

The corresponding results are obtained for the second branch. 
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